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Abstract

The aim of the present paper is to analyze the importance of thermal boundary conditions of the heated/cooled walls in heat transfer and
entropy generation characteristics inside a porous enclosure, heated from below. Both the heating and the cooling are carried out uniformly and
non-uniformly and the results are compared. The laminar, steady, natural convection heat transfer is calculated by solving numerically the mass,
momentum, and energy conservation equations whilst viscous dissipation and the work of pressure forces are included in the energy equation.
Moreover, the generation of entropy is calculated taking into account both heat transfer irreversibility and fluid friction irreversibility. As the
thermal boundary conditions, sinusoidal temperature distributions are invoked for the non-uniformly heated/cooled walls. Comparison between
the results of the present numerical model with the previously published works provides excellent agreement. Results are presented in terms of
streamlines, isothermal lines, iso-entropy generation lines, and iso-Bejan lines. Additionally, variations of average Nusselt number, global entropy
generation rate, and global Bejan number are analyzed over a wide range of Darcy-modified Rayleigh number (10 < Ra < 1000). Inspection of
the results indicates that thermal boundary conditions are of profound influences on the induced flow as well as heat transfer characteristics and
possess prominent consequences on entropy generation rates. It is demonstrated that, the optimum case with respect to heat transfer as well as
entropy generation could be achieved by non-uniform heating.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Buoyancy driven flows inside porous media occur in diverse
applications such as geothermal energy systems, solar collec-
tors, insulation systems, and cooling of radioactive waste con-
tainers. Going on to the literature, one can find many works con-
cerning natural convection inside enclosures filled with fluid-
saturated porous media with differentially heated vertical walls
and insulated horizontal walls (e.g., Moya et al. [1]; Baytas and
Pop [2]; Saeid and Pop [3]; Misirlioglu et al. [4]; Badruddin
et al. [5]). Nevertheless, there is a noticeable dearth of works
concerning natural convection inside porous enclosures under
other thermal boundary conditions, especially with walls under
non-uniform temperatures.
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Yoo [6] and Yoo and Schultz [7] have obtained analytical
solution in the context of the natural convection problem in a
fluid-saturated porous media between two infinite vertical and
horizontal walls, respectively. They invoked sinusoidal temper-
ature distribution for the walls and investigated the influences
of wave number and phase indifference on the induced flow as
well as heat transfer characteristics. Saeid [8] has analyzed nat-
ural convection inside a porous enclosure with partially-heated
bottom wall, cooled top wall and adiabatic vertical walls. He
demonstrated that average Nusselt number enhances due to the
length of heat source and due to the amplitude of temperature
variation. Basak et al. [9] have investigated a porous enclosure
with uniformly and non-uniformly heated bottom wall, and adi-
abatic top wall, maintaining constant temperature for the cold
vertical walls. Concerning their results, they concluded that,
non-uniform heating of the bottom wall provides higher heat
transfer rates at the central region of the bottom wall whereas
average Nusselt number is lower for non-uniform heating. Re-
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Nomenclature

Be Bejan number
Beglobal global Bejan number
cp constant pressure specific heat . . . . . . . . . . . J/kg K
Ec Eckert number
FFI fluid friction irreversibility
g gravitational acceleration . . . . . . . . . . . . . . . . . m/s2

HTI heat transfer irreversibility
K permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

L enclosure height . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
N local entropy generation rate
Nglobal global entropy generation rate
Nu local Nusselt number
Nu average Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Ra Darcy-modified Rayleigh Number
T temperature at any point . . . . . . . . . . . . . . . . . . . . . K

TC temperature of the cold wall . . . . . . . . . . . . . . . . . . K
TH temperature of the hot wall . . . . . . . . . . . . . . . . . . . K
�T temperature difference, �T = TH − TC . . . . . . . . K
u,v velocity components in x and y directions . . . m/s
x, y Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . m
X,Y dimensionless coordinates

Greek symbols

α effective thermal diffusivity . . . . . . . . . . . . . . . m2/s
β volumetric expansion coefficient . . . . . . . . . . . K−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . m2/s
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ψ streamfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
Ψ dimensionless streamfunction
Θ dimensionless temperature
τ dimensionless temperature difference, �T/TC
cently, Oztop [10] has discussed the problem of partially cooled
and inclined porous enclosure with one side wall at constant hot
temperature, one adjacent wall being partially cooled, and the
remaining ones adiabatic. He found that inclination angle is the
dominant parameter on heat transfer and fluid flow.

All of the aforementioned studies are the First-Law (of ther-
modynamics) analyzes of non-uniformly heated porous enclo-
sures. Recently, Second-Law based investigations have been
utilized to study entropy generation. This could gauge the sig-
nificance of irreversibility related to heat transfer, fluid friction,
and other non-ideal processes within thermal systems and en-
ables us to find thermal boundary conditions where by mini-
mum irreversibility is produced. Consequently, cares needs to
be taken to the problem of entropy generation in porous en-
closures under non-uniform wall temperatures. Nevertheless,
the literature survey carried out by the author reveals the sub-
ject has not been investigated thus far. The available works
in entropy generation associated with natural convection heat
transfer inside porous enclosures go back to the investigations
conducted by Baytas [11] and Mahmud and Fraser [12]. Bay-
tas [11] has examined an inclined enclosure with differentially
heated vertical walls and insulated horizontal walls and con-
cluded that as Darcy-modified Rayleigh number decreases, heat
transfer irreversibility begins to dominate fluid friction irre-
versibility. Mahmud and Fraser [12] have analyzed the problem
of entropy generation in the magnetohydrodynamic natural con-
vective flow inside a porous enclosure with thermal boundary
conditions similar to Baytas [11]. They found that as the mag-
netic force is introduced, entropy generation rate decreases.

In both of the aforementioned investigations, viscous dissi-
pation term was taken into account in the equation of entropy
generation whereas it was not included in the energy conserva-
tion equation. On a similar tack, in all of the previous works
concerning viscous dissipation term in the energy equation, ad-
dition of the term has made the enclosure as a heat multiplier
which violates the First Law of Thermodynamics [5,13]. Re-
cently, Costa [14] has proposed that in order to have an energy
conservation formulation compatible with the First Law, the
work of pressure forces must also be taken into account if the
viscous dissipation term is going to be included in the energy
equation. This occurs since in natural convective flows, viscous
dissipation results from fluid motion which is due to the work
of pressure forces involved in the expansion–contraction cycle
experienced by the fluid.

In the view of the above, this study investigates a porous en-
closure in which the bottom wall is heated and the top wall is
thermally insulated; whereas the two vertical walls are cooled.
Attention will be focused in the present paper to analyze the im-
portance of thermal boundary conditions of the heated/cooled
walls in the development of flow, heat transfer, and entropy
generation. Both the heating and the cooling are carried out uni-
formly and non-uniformly and the results are compared. The
governing flow and energy equations are solved numerically
whilst viscous dissipation and the work of pressure forces are
included in the energy conservation equation. Moreover, the
rate of entropy generation is calculated taking into account both
heat transfer irreversibility and fluid friction irreversibility.

2. Mathematical formulation

Natural convective flow inside an enclosure filled with fluid-
saturated porous media is concerned as depicted in Fig. 1. Here,
the vertical walls are cooled uniformly or non-uniformly. The
top wall is maintained adiabatic. In addition, uniform or non-
uniform heating is concerned for the bottom wall. In order to
facilitate the solution of the governing equations, several as-
sumptions are adopted. These assumptions include

• The fluid is ideal gas.
• The developed flow is laminar.
• The porous media is isotropic and possesses homogeneous

permeability.
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Fig. 1. Physical model of the 2D porous enclosure.

• There is local thermal equilibrium between the medium and
the fluid.

• Fluid flow inside the fluid-saturated porous medium is gov-
erned by the Darcy’s law.

• The fluid physical properties are constant except the density
in the body force term in the momentum equation for which
the Oberbeck–Boussinesq approximation is invoked.

Under these assumptions and by using the averaged tempera-
ture of the cold walls as the reference temperature, the equations
of continuity, momentum, and energy are reduced to the fol-
lowing dimensionless form in terms of streamfunction (Ψ ) and
temperature (Θ)
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Here, the last term in Eq. (2) represents viscous dissipation
and the work of pressure forces combined to each other by the
assumption of ideal gas. The corresponding dimensionless vari-
ables are
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Moreover, dimensionless streamfunction, Ψ , is defined by

∂Ψ

∂y
= U and

∂Ψ

∂x
= −V (4)

In the cases under consideration, Eqs. (1) and (2) are sub-
jected to the following boundary conditions

X = 0 and 0 < Y < 1:
Ψ = 0 and Θ = 0 or Θ = 1 − sin(πY ) (5a)
X = 1 and 0 < Y < 1:
Ψ = 0 and Θ = 0 or Θ = 1 − sin(πY ) (5b)

0 < X < 1 and Y = 0:
Ψ = 0 and Θ = 1 or Θ = sin(πX) (5c)

0 < X < 1 and Y = 1: Ψ = 0 and ∂Θ/∂Y = 0 (5d)

Here, the sinusoidal thermal boundary conditions corre-
spond to non-uniform heating or cooling cases. The quantities
of physical significance are the local and average Nusselt num-
bers at the non-adiabatic walls. These quantities are calculated
as
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[
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]
Y=0
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1∫

0
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for the bottom wall and as
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X=0,1
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0
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for the vertical walls.

3. Entropy generation

Following a similar non-dimensionalization procedure, di-
mensionless form of the entropy generation equation becomes
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Here, the first term on the right-hand side is due to the trans-
fer of heat in the direction of finite temperature gradients and
is generally termed as heat transfer irreversibility (HTI) whilst
the second term is the contribution of fluid friction irreversibil-
ity (FFI).

As the distribution of volumetric entropy generation rate in-
side the enclosure is obtained, it would be integrated over the
whole domain to yield global entropy generation rate

Nglobal =
∫ ∫
∀

N d∀ =
1∫

0

1∫
0

N(X,Y )dX dY (9)

An alternative irreversibility distribution parameter is Bejan
number (Be), which is the ratio of heat transfer irreversibility to
global entropy generation rate [15]

Be(X,Y ) = HTI

HTI + FFI
(10)

Be � 0.5 is the limit at which, heat transfer irreversibility dom-
inates; Be � 0.5 is the opposite limit at which, irreversibility is
dominated by fluid friction effects; and Be ∼ 0.5 is the case
wherein, HTI and FFI are of equal importance. Here also, inte-
grating Bejan number yields global Bejan number

Beglobal =
∫ ∫
∀

Be d∀ =
1∫

0

1∫
0

Be(X,Y )dX dY (11)
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4. Solution procedure

4.1. Numerical scheme

The resulting dimensionless coupled partial differential
equations (Eqs. (1) and (2)) are solved simultaneously along
with the corresponding boundary conditions (Eq. (5)). The
governing equations are converted into a system of algebraic
equations through integration over each control volume using
the formulation outlined by Patankar [16]. This method assures
that conservation laws are obeyed over each control volume.
A non-staggered and non-uniform grid is used, with control
volume faces lying on the boundaries. The grid expands from
the walls to the center with a geometric expansion factor equal
to 1.05. The algebraic equations are solved by a line-by-line
iterative procedure. The method sweeps the domain of inte-
gration along the x and y axes and uses Tri-Diagonal Matrix
Algorithm (TDMA) iteration to solve the system of equations.
The convergence criterion employed is the following condi-
tion∑

i,j |φn
i,j − φn−1

i,j |∑
i,j |φn

i,j |
� 10−6 (12)

where φ stands for either Θ or Ψ and n denotes the iteration.
During this study, the following parameters are retained con-
stant.

Ec Pr/Da = 0.001; �T = 10 K; TC = 300 K

βC = 1/TC K−1

4.2. Computational grid

To obtain a grid suitable for this study, a grid independence
test is performed. The results in terms of overall Nusselt number
at the heated bottom wall of the enclosure are listed in Table 1.
Here, the uniform heating/cooling case is concerned. Inspection
of the results indicates that, a 100 × 100 grid provides accept-
able results for the whole range of Darcy-modified Rayleigh
number. Further investigations also verify the suitability of such
a grid under non-uniform heating and cooling cases.

5. Results and discussion

Initially, a code validation study is undertaken. In order to
resemble the previous investigations, such a study is carried out
in a porous enclosure with differentially-heated vertical walls
and insulated horizontal walls. Numerical values of the over-
all Nusselt number in the vertical walls are compared with

Table 1
Grid independence test

Grid size Ra = 10 Ra = 100 Ra = 1000

200 × 200 5.732 6.840 12.256
100 × 100 5.735 6.842 12.250
50 × 50 5.599 6.736 12.239
25 × 25 5.183 6.589 12.107
the previously published works in Table 2. Inspection of the
results demonstrates that, results of the present model bear a
strong resemblance to the previously published works. This
provides confidence to the developed mathematical model and
the solution procedure for further studies. Consequently, in the
foregoing section, it is used to analyze the development of
flow and thermal fields as well as heat transfer characteristics
and entropy generation in the natural convective flow inside a
porous enclosure heated from below. The importance of thermal
boundary conditions in heat transfer and entropy generation is
then discussed.

Contour plots of dimensionless streamfunction and temper-
ature for the cases of uniform heating/cooling, non-uniform
heating, and non-uniform cooling at Ra = 100 are depicted in
Fig. 2. Comparison between the results of the three cases of
heating/cooling indicates that, thermal boundary conditions are
of profound influence on the induced flow as well as thermal
fields. As can be observed from the streamfunction contours,
due to the cold vertical walls, fluids ascend from the middle
portion of the bottom wall and flow down along the two vertical
walls forming two symmetric rolls with clockwise and anti-
clockwise rotations inside the enclosure. Under non-uniform
cooling, two smaller roles also exist in the upper part of the
enclosure. As shown in Fig. 2, under uniform heating/cooling,
contour lines of streamfunction and temperature are very con-
centrated in the vicinity of the edges of the bottom wall. This is
mainly due to high temperature gradients at the edges of the bot-
tom wall which may result in high intensity of fluid flow, heat
transfer, and entropy generation there. By contrast, the cases of
non-uniform heating and non-uniform cooling have much more
uniform streamfunction and temperature distributions over the
whole domain. Consequently, these cases have the potential to
produce lower heat transfer and entropy generation than the uni-
form one.

Distributions of local Nusselt number along the heated bot-
tom wall under the three cases of heating/cooling are presented
in Fig. 3. Clearly, under uniform heating/cooling, due to high
temperature gradients, the value of local Nusselt number is
very high at the edges of the wall whilst the heat transfer rate
reduces toward the center with nearly uniform values at the
central region. By contrast, the cases with non-uniform heat-
ing and non-uniform cooling provide much more uniform re-
sults. Here, the heat transfer rates increases toward the center,
with nearly uniform values at the central region. Inspection of
Fig. 3 indicates that at the central region, the greatest heat trans-
fer rates occur under non-uniform heating. This occurs since

Table 2
Comparison of the average Nusselt number with previously published works

Author Ra = 10 Ra = 100 Ra = 1000

Moya et al. [1] 1.065 2.801 –
Baytas and Pop [2] 1.079 3.16 14.06
Saeid and Pop [3] – 3.002 13.726
Misirlioglu et al. [4] 1.119 3.05 13.15
Badruddin et al. [5] 1.0798 3.2005 –
Present simulation 1.067 3.026 13.134
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Fig. 2. Distributions of streamlines and isothermal lines at Ra = 100.
Fig. 3. Distributions of local Nusselt number along the heated bottom wall at
Ra = 100.

non-uniform heating establishes the highest temperature gra-
dients there which can be observed in Fig. 2. Such a result
confirms that of Basak et al. [9] who compared heat transfer
rates under the two cases of uniform heating and non-uniform
heating.
Fig. 4. Distributions of local Nusselt number along the cooled vertical walls at
Ra = 100.

Fig. 4 displays the heat transfer rates along the cooled walls.
Under uniform heating/cooling, the local Nusselt number is
found to be decreasing as we proceed along the height of the
vertical walls. Here also, a very high heat transfer rate exists at
the bottom edges of the walls. The physical reasoning for this
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behavior is the reduction of temperature difference between the
vertical walls and their adjacent fluid in the higher heights. Sim-
ilar decreasing trends can also be observed under non-uniform
heating case for Y > 0.25. Variation of local Nusselt number
is completely different under the non-uniform cooling case.

Fig. 5. Variations of average Nusselt number according to Darcy-modified
Rayleigh number.
Here, temperature difference between the walls and their adja-
cent fluid is high in the central and the upper parts of the vertical
walls which enhance heat transfer rates, there.

The overall effects of the three cases upon heat transfer rates
are compared in Fig. 5. Here, variations of the average Nus-
selt number at the heated wall is plotted against Darcy-modified
Rayleigh number under the three cases of heating/cooling. As
expected, the uniform heating/cooling achieves the highest heat
transfer rates. It is also observed that, due to the enhanced con-
vection regime, increase in Ra raises the heat transfer rates both
for uniform heating/cooling and non-uniform heating. In spite
of this, under non-uniform cooling, the value of average Nusselt
number remains nearly constant in the whole range of Darcy-
modified Rayleigh number.

In what concerns fluid friction irreversibility and heat trans-
fer irreversibility, the results at Ra = 100 are presented in Fig. 6.
The view of the observer is directed towards the lower half of
the vertical walls, as well as, the corner sides of the horizon-
tal wall. These locations act as strong concentrators of fluid
friction irreversibility and heat transfer irreversibility due to
higher values of near wall velocity components and temperature
gradients, respectively. However, a significant portion of the en-
closure acts as an ideal region for entropy generation wherein
both FFI and HTI are zero or negligible.
Fig. 6. Distributions of fluid friction irreversibility and heat transfer irreversibility at Ra = 100.
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Fig. 7. Distributions of iso-entropy generation lines and iso-Bejan lines at Ra = 100.
Such variations for fluid friction irreversibility and heat
transfer irreversibility make the distributions of local entropy
generation rate (iso-entropy generation lines) as well as local
Bejan number (iso-Bejan lines) inside the enclosure as depicted
in Fig. 7. Comparison between the results of the three cases
of heating/cooling indicates that, thermal boundary conditions
possess prominent consequences on entropy generation rates.
As can be illustrated with the figure, under all cases, lower walls
act as strong concentrators of irreversibility whilst Bejan num-
ber spreads over the whole domain.

Fig. 8 shows the distributions of the global entropy gener-
ation rate as a function of Darcy-modified Rayleigh number
under the three cases of heating/cooling. In a general way, no-
tice that uniform heating/cooling suffers from the highest values
of entropy generation rates whereas the lowest rates of entropy
generation are achieved by non-uniform heating. It is also ob-
served that, due to the enhanced induced flow and heat transfer
rate, increase in Ra always raises the global entropy generation
rates.

As observed from Figs. 5 and 8, although uniform heat-
ing/cooling achieves the highest heat transfer rates, it suffers
from the highest rates of entropy generation. From the stand-
points of the First Law and the Second Law (of thermodynam-
ics), an efficient thermal boundary condition for the enclosure
Fig. 8. Variations of global entropy generation rate according to Darcy-modified
Rayleigh number.

must lead to high heat transfer rates as well as low rates of en-
tropy generation. Consequently, the performances of the three
cases of heating/cooling can be evaluated in terms of Nu/Nglobal

which is the ratio of average Nusselt number to global entropy
generation rate. Fig. 9 illustrates the variations of the parameter
according to Darcy-modified Rayleigh number under the three
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Fig. 9. Variations of the ratio of average Nusselt number to global entropy gen-
eration rate according to Darcy-modified Rayleigh number.

Fig. 10. Variations of global Bejan number according to Darcy-modified
Rayleigh number.

cases of heating/cooling. Concerning this figure, it can be con-
cluded that, non-uniform heating attains the highest values of
Nu/Nglobal and achieves the optimum case with respect to heat
transfer as well as entropy generation. Thermal performance
of the uniform heating/cooling closely follows the non-uniform
heating and provides satisfactory results. Nevertheless, the non-
uniform cooling is found inappropriate and must be avoided
both from the First Law and the Second Law points of view.

Finally, variations of global Bejan number corresponding to
Ra are displayed in Fig. 10. At low Darcy-modified Rayleigh
numbers, conduction mode dominates. Therefore, most of the
contribution on the overall entropy generation comes from heat
transfer irreversibility and Bejan numbers are almost equal to
unity. As Ra increases, the induced flow accelerates and FFI
tends to HTI asymptotically. Consequently, dramatic falls of
Bejan numbers are observed up to Ra ∼ 100 wherein the num-
bers approach to about 0.5. As can be witnessed, further in-
creases in Darcy-modified Rayleigh number possess minor in-
fluences on Beglobal and the number remain nearly constant for
Ra > 100.
6. Concluding remarks

The importance of thermal boundary conditions of the
heated/cooled walls in heat transfer as well as entropy gen-
eration characteristics inside a porous enclosure, heated from
below was investigated here. Both the heating and the cooling
were carried out uniformly and non-uniformly and the results
were compared. Based on the presented results, the following
conclusions may be drawn

• Thermal boundary conditions are of profound influence on
the induced flow as well as heat transfer characteristics
and possess prominent consequences on entropy generation
rates.

• Uniform heating/cooling achieves the highest heat transfer
rates whereas non-uniform cooling suffers from the lowest.

• Entropy generation rate is likely to be the highest for uni-
form heating/cooling and the lowest for non-uniform heat-
ing.

• The optimum case with respect to heat transfer and entropy
generation could be achieved by non-uniform heating.
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